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ABSTRACT

An explicit and unconditionally stable finite difference method for the solution

of the transient inverse heat conduction problem in a semi-infinite or finite

slab mediums subject to nonlinear radiation boundary conditions is presented.

After measuring two interior temperature histories, the mollification method is
used to determine the surface transient heat source if the energy radiation law

is known. Alternatively, if the active surface is heated by a source at a rate
proportional to a given function, the nonlinear surface radiation law is then

recovered as a function of the interface temperature when the problem is
feasible. Two typical examples corresponding to Newton cooling law and Stefan

-Boltzmann radiation law respectively are illustrated. In all cases, the
method predicts the surface conditions with an accuracy suitable for many
practical purposes.
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F 1. Introduction.

In this paper we investigate the numerical identification of surface transient
heat sources in one-dimensional semi-infinite and finite slab mediums when the

active surface radiates energy according to a known nonlinear law. Alternatively,
if the active surface is heated by a source at a rate proportional to a given

function, the nonlinear radiating boundary condition is then numerically identified
as a function of the interface temperature if the problem is feasible.

These two tasks can be viewed as suitable generalizations of the classical

problem of attempting to determine the interface temperature between a .gas and a
solid with a nonlinear heat transfer law. The existence and uniqueness of a

strictly increasing solution of the semi-infinite body version of this problem has

been considered by Mann and Wolf [Ref.7] for a monotone Lipschitz radiation law.

Roberts and Mann [Ref.lO] extended the previous result after removing the Lipschitz
condition on the nonlinear heat transfer law. Keller and Olmstead [Ref.6]

investigated the same problem in the presence of a positive integrable transient

source and introduced a constructive proof for existence and uniqueness of the

interface temperature by the method of lower and upper solutions. The numerical
solution of the nonlinear Volterra integral equation characterizing the active

surface temperature history was implemented by Chambr6 [Ref.1] using the method of
succesive approximations and, more recently, by Groetsch [Ref.3] who succesfully
combined Abel inversion formula with B-spline approximation and product

integration. A natural extension of this technique to solve the same problem in the
finite slab medium is discussed in Groetsch [Ref.4]. Also for the finite slab case,

VillaseNor and Squire [Ref.12] have proposed a numerical procedure based on a

generalized trapezoidal rule and Richardson extrapolation. More general problems of
the same kind, combining the effects of convection and radiation at the interface,

can be found in Friedman [Ref.2] and Saljnikov and Petrovic [Ref.ll].
In all the works mentioned above, the nonlinear radiation law and the transient

boundary source are supposed to be known in order to determine the interface

temperature. Consequently, if the new task consists on the identification of the
nonlinear radiation law or on the identification of the transient boundary source

function, a different approach must be used.
It is possible to estimate the surface temperature and the surface heat flux in

a body from measured temperature histories at fixed locations inside the body.
However, this Inverse Heat Conduction Problem (IHCP) is an ill-posed problem

because small errors in the data induce large errors in the computed surface heat

flux history or in the computed temperature history solutions and, consequently,
special methods are needed in order to restore continuity with respect to the data.

In this paper we consider initially, the solution of a one-dimensional IHCP by a

fully explicit and stable space marching finite difference implementation of the
Mollification Method introduced by Murio [Ref.8] and Guo, Murio and Roth [Ref.5].

The procedure allows for a direct discretization of the differential equation and

it is generated by automatically filtering the noisy data by discrete mollification
against a suitable averaging kernel and then using finite differences, marching in

space, to numerically solve the associated well-posed problem. Once the temperature
and the heat flux transient functions have been approximately recovered at the

interface, it is a simple task to numerically identify the transient heat source if
the nonlinear radiation law is known. On the other hand, if the surface is heated

by a source at a rate proportional to a given function, we proceed to approximately

recover the nonlinear surface radiation law describing the physical conditions at

the interface, provided that the range of temperatures at the interface contain
sufficient information.

In Section 2, we define the new identification problems with data specified on a
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F continuum of time and data errors measured in the norm and derive rigorous IL2
l

stability bounds. The efficiency of the method is demonstrated in Section 3, where

together with a description of the numerical procedure, we present the results of

several computational experiments with rapidly varying and discontinuous profiles,
for both linear - Newton cooling law - and nonlinear - Stefan-Boltzmann law -

models. In all cases, numerical stability and good accuracy are achieved even for

small time steps and high levels of noise in the data. Section 4 includes a summary
and some conclusions.

2. Description of the Problem.

We consider a one-dimensional IHCP in a semi-infinite or finite slab, in which

the temperature and heat flux histories f(t) and q(t) on the left-hand surface (x =
O) are desired and unknown, and the temperature and heat flux at some interior

point x = x 0 or at the right-hand surface x = a are approximately measurable. Note

that, equivalently, the data temperature histories might be measured at two

interior points. For the semi-infinite medium, O < x 0 and for the finite slab, O <

x O -< a. We assume linear heat conduction with constant coefficients and normalize

the problem by dimensionless quantities. Without loss of generality, we consider x 0

= a = 1 in all cases. The problem can be described mathematically as follows.
For the semi-infinite or finite slab, the unknown temperature u(x,t) satisfies

respectively,

ut(x,t) = Uxx(X,t),

u(l,t) = F(t),

-ux(l,t) : O(t),

u(x,0) = u0(x),

u(0,t) = f(t).

-Ux(0,t) = q(t)

t > O, 0 < x < oo or 0 < x < i,

t > O, with corresponding approximate

data function Fm(t),

t > O, with corresponding approximate

data function Qm(t),

0 < x < _ or 0 < x < I,

t > O, the desired but unknown

temperature function,

= E(u(O,t))-g(t), t > O, the desired but unknown
heat flux function.

(la)

(ib)

(Ic)

(Id)

(le)

(If)

L

The nonlinear boundary condition (If), indicates that the active surface radiates

energy at a rate proportional to E and is heated at a rate proportional to the

function g. Our aim is to obtain more detailed information about the boundary
condition at the interface x = O. More precisely, we want to estimate the

function E if g is known or, reciprocally, we want to identify the source function

g if the radiation law E is given.

We also assume that all the functions involved are L 2 functions in any time

interval of interest and use the corresponding L 2 norm, as defined below, to

measure errors:

t2 ] 1/2I,fl{ = [ J't, If(t){2 dt

In this setting, it is also natural to hypothesize that the exact data functions

F(t) and O(t) and the measured data functions Fro(t) and Qm(t) satisfy the L 2 data

error bounds

IIF-Fmll -< c and IIQ-QmII -_ c.

J
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F It is well known that solving for f(t) and q(t) from F(t) and Q(t) amplifies 1
every Fourier frequency component of the error by the factor exp[w/2] I/2, -_ <w< co.

This shows that the inverse problem is highly ill-posed in the high frequency

components. See Murio [Ref.8] and Guo, Murio and Roth [Ref.5] for further

discussions.

Stabilized Problem.

The one-dimensional IHCP can be stabilized if instead of attempting to find the

point values of the temperature function f(t) or the heat flux function q(t), we

attempt to reconstruct the 6-mollification of the functions f and q at time t,

given by

J6f(t} = (p&*f)(t), Jsq(t) = (pc3_q)(t),

where

1

p(3(t) - exp[-t2/62]
6 _z1/2

is the one-dimensional Gaussian kernel of radius 6 > 0. The mollifier p&(t) is

always positive, falls to nearly zero outside the interval centered at the origin
and radius 36 and

n_

(pa*f)(t) = J" pS(_)f(t-z) d'_

is the one-dimensional convolution of the functions P6 and f. We notice that J6f(t)

is a C_ (infinitely differentiable) function and that the mollifier has total

integral 1. Mollifying system (1}, we obtain the following associated problem:

Attempt to find J6fm(t} = Jau(0,t} and J6qm(t) = -J6ux(0,t) at some point t of

interest and for some radius 6 > 0, given that J6u{x,t) satisfies for the semi-

infinite or finite slab respectively,

(Jault = (JaU)xx,

J_u(1,t) = J6Fm(t),

-JBux(1,t) = J&Qm(t),

Jau(x,0) = Jau0(x,0),

J&u(O,t) = J6fm(t),

-J&ux(O,t) = Jaqm(t),

t > O, 0 < x < ¢, or 0 < x < 1,

t>O,

t>O,

0 < x < ,_ or 0 < x < I,

t > O, unknown,

t > O, unknown.

(2)

L

This problem and its solutions satisfy the following:

Theorem 1. Suppose that IIF-Fmll _ ¢ and IIQ-QmU _ c:. Then

(i) Problem (2) is a formally stable problem with respect to perturbations in the
data.

(ill If the exact boundary temperature function f(t) and the exact heat flux

function q(t) have uniformly bounded first order derivatives on the bounded domain

D = [O,T], then Jc3fm and J&qm verify

J
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,f-Jafm, D - O(81 + 3e exp[(281 -z/a] (3) I

and

g

IIq-J6qmll D -< 0(8) + - (1 + 3 exp[6-2/3]). (4)2

The proof of this statement can be found in Guo, Murio and Roth [Ref.5].
Once the mollified temperature and mollified heat flux functions have been

evaluated at the interface, it is feasible to attempt to identify the source

function g or the radiation energy function E given in formula (if).

Identification of the source function g.

Assuming that the radiation law at the active surface is known, according to
(If), the exact source function is given by

g(t) = E(f(t))-q(t). (5)

The approximate source function, denoted ga(t), is defined by

ga(t) = E(JTfm(t))-JTqm(t) , (6)

and in order to estimate the error, we suppose that the surface radiates energy at

a rate proportional to If(t)] p. Here p is a positive integer, the value p = I

corresponding to Newton's law of cooling and p = 4 to Stefan's radiation law.
The difference (5) - (6) gives

g(t) - ga(t) = [f(t)] p - [Jsfm(t)lP + q(t) - JTqm(t).

From the identity an - bn = (a-b)(an-l+an-2b +...+abn-2+bn-l), taking norms and

introducing M = max {llJTfmlloo, D, llflloo, D}, we get

llg - gallD _ pM p-I llf - JTfmllD + llq - JTqmll D.

Combining the last inequality with the upper bounds (3) and (4), we obtain the
estimate

IIg - gall D -_ (pM p-1 + 1) {0(8) + 3c exp[6-2/3]}. (7)

This shows that the identification of the source function g is stable with respect

to errors in the data functions F and Q , for fixed p and 6 > 0.

Remarks:

1. Notice that the approximate source function ga is actually a function of the

radius of mollification c5, the amount of noise in the data c and the exponent p in
the radiation model E.

2. From a more theoretical point of view, inequality (7) can be used to show the

convergence of ga to g in the L 2 norm. In fact, setting O(6) = C 8 for some

constant C > O, and choosing _ = [ln(1/cl/2)] -a/z, after replacing these quantities
in (7), we obtain

IIg - gallD .c (pM p-1 + l)(C[ln(1/cl/Z)]-3/z + 3c,/Z).

This last inequality implies that, for the special selection of the radius of

mollification indicated above, IIg -gallD -_ 0 as e -_ O, for any value of p.

Identification of th__eeradiation law function E.

L
From equation (lf) it follows that the exact function E, assuming that the
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F source function g is given, satisfies
E(u(O,t)) = E(f(t}) = gft) + q(t}. (8)

The approximate function, denoted Ea, is defined by

Ea(Jgfm(t)) = g(t) + J6qm(t). (9)

Subtracting (8) from (9), taking norms and using inequality (4}, we inmediately
have

lie - Eall D _ 0((3) + -- (l+ 3 exp[&-2/3]). (10)
2

This estimate also shows that the identification of the radiation law - as a

function of time - is stable with respect to perturbations in the data functions F

and Q, for a fixed 6 > O, provided that the source function is known. However, this

information is clearly not sufficient to identify the physical process at the

interface. Nevertheless, since at each time t i we know the ordered pairs

(ti,Jc3fm(ti)) and (ti,Ea(ti}), it is possible to collect the coordinates

(J6fm(ti),Ea(ti}) for t in a discrete subset of D and obtain a graph of the

approximate funcional relationship between the radiation law and the temperature at

the interface. This is certainly always the case if the cardinality of the range of

temperatures {J&fmt{i)} is sufficiently large. Similar remarks to the ones in the

previous paragraph, about the parameter dependency of Ea and convergence in the L 2

norm of E a to E as the quality of the data functions improve, ¢ -_ O, also apply

here.

The computational details are presented in the next section.

3. Numerical Procedure.

With v = J6u and z = -Ov/Ox, system (2) is equivalent to

Ov 0z
- t > O, 0 < x < ,_or 0 < x < i,

Ot ax'

Ov

8x

v(l,t)= JcsFm(t),

z(l,t)= Jd_Qm(t), (ll}

v(x,O) = J&uo(x,O),

v(0,t) = J6fm(t),

z(0,t) = J6qm(t),

Without loss of generality, we will seek to reconstruct the unknown mollified

boundary temperature function Jsfm and the mollified boundary heat flux function

J&qm in the unit interval I = [0,1] of the time axis (x = 0). Consider a uniform

grid in the (x,t} space:{(x i = ih, t n = nk), i = 0,1 ..... N, Nh = 1; n = 0,1 ..... M,

Mk = L), where L depends on h and k in a way to be specified later, L > 1.

Let the grid functions V and W be defined by
n n

V i = v(xi,tn), W i = z(xi,tn), 0 -" i -" N, 0 -_ n -" M.

Notice that

t > 0, 0 < x < _ or 0 < x < 1,

t>0,

t>0,

0 < x < ,_ or 0 < x < 1,

t > 0, unknown,

t > 0, unknown.

L
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F V_q = JsFm(tn ), W_q = J5Qm(tn ), O --- n _ M,

and

0
V i = J5u0(xi,0), 0 -_ i -_ N.

We approximate the partial differential equation in system (11) with the consistent
finite difference schemes

n n L(v.n+I. n-iWi_ 1 = W i - - V i ),
2k

n n n

Vi_ 1 = V i - h Wi_ 1, (12)

i = N, N-I ..... 1; n = 1,2,...,M-1.

Notice that, as we march backward in the x-direction, we must drop the estimation

of the interior temperature from the highest previous point in time. Since we want

to evaluate {V 8} and {W8) at the grid points of the unit time interval I = [0,1]

after N iterations, the minimum initial length L of the data sample interval in the
time axis (x = 1) needs to satisfy the condition L = kM = 1 - k +k/h.

Once the temperature J6fm and the heat flux Jsq m have been reconstructed, we

proceed with the approximate identification of the source function ga or the

radiation law function E a as explained in Section 2.

Remarks:

1. The radius of mollification, 6, can be selected automatically as a function of

the level of noise in the data. In fact, for a given e > O, there is a unique 5 >
O, such that

IIJsF m - Fmll D = c. (13)

For the proof of this assertion and some discussions on the numerical

implementation of this practical selection criterion, see Murio [Ref.9].

2. For the proof of the unconditional stability of the finite difference scheme

(12) and the analysis of the convergence of the numerical solution of the mollified
problem (ll), the reader should consult Guo, Murio and Roth [Ref.5].

Numerical Results.

1

In order to test the accuracy and the stability properties of our method, in

Problem 1, the approximate reconstruction of a source function g(t) and a nonlinear
radiation law E{u(O,t)) are investigated for a one-dimensional finite slab exposed

to a heat flux data function at the free surface x = 1 given by -Ux(1,t) = Q{t) =

O, t > O, and a temperature data function

I 1 2 _ (-I) n
u(l,t) = F(t) = (t=0.2) _ --exp [=n2n2(t-0.2)], t > 0.2,

6 ._2 n=l n 2
0, 0 < t-_ 0.2.

The exact source solution to be approximately reconstructed at the interface x = 0

has equation g(t} = E(u(0,t)} - q(t), where E(u(0,t)) = [u{0,t)] p and q(t) =

-Ux(0,t). We consider the values p = 1 and p = 4 corresponding to Newton's law of

J
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cooling and Stefan's radiation law respectively. The exact radiation law at the I

interface is given by E(u(O,t)) = g(t) + q(t) and we only consider the nonlinear
case p = 4. If the initial temperature distribution u(x,O) is zero, the exact
temperature and heat flux functions at the interface are given respectively by

a function at the free surface x = 1 given by -Ux(1,t) = Q(t) = O, t > O, and a

temperature data function

I 1 2 oo 1
u(O,t) = f(t) = (t-0.2)+- - --Z _ exp [-n2-_2(t-0.2)l, t > 0.2,

3 ft2 n=l n2
O, 0 < t <- 0.2.

and

-ux(O,t) = q(t) = [ 1, t > 0.2,

L O, 0 < t -< 0.2.

With this information we generate the exact functions E(u(O,t)) and g(t) for our

model problem.

In Problem 2, we attempt to approximately reconstruct the transient source

function g(t) for a semi-infinite body initially at zero temperature with data

functions

L

(

u(l,t) = F(t) = 4 erfc[(t-0"2)-l/2/2]' t > 0.2,

LO, 0 < t -< 0.2,

and

-Ux(1,t) = Q(t) = _ [_(t-O'2)]-l/Zexp{-[4)t-0"2)]-l}'

LO,

The unique temperature solution at the interface is

u(O,t) = f(t) = _ I, t > 0.2,

t 0, 0 < t -_ 0.2.

and the corresponding heat flux at the interface is

t > 0.2,

0 <t-0.2.

f

-ux(O,t) = q(t) = J [_(t-O'Z)]-l/z' t > 0.2,

LO, 0 < t -< 0.2.

In this case, we do not attempt the identification of the radiation law at the

active boundary. The energy as a function of the interface temperature is either 0
or I for any value of p making its identification impossible. There is no enough

information in the range of boundary temperatures which in this example is reduced
to just two temperature values.

Since in practice only a discrete set of points is generally available, we shall

assume that the data functions F m and Qm are discrete functions measured at equally

spaced points in the time domain I = [0,L], where L = I - k + k/h, Nh = I, h = Ax

and k = At. In order to compute J&Fm(t n) and J&Qm(tn) in I, we need to extend the

data functions in such a way that F m and Qm decay smoothly to zero in the interval

I6m_x = [-36m_.x,L+36 max] and both are zero in R - I_max. In what follows, we

consider the extended discrete data functions F m and Qm defined at equally spaced

sample points on any interval of interest in the time axis.

The selection of the radius of mollification is implemented by solving the

1
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F discrete version of equation (13), using the bisection method.
Once the radii of mollification (3F and 80' associated with the data functions F m

and Om respectively, and the discrete filtered data functions J_Fm(tn)--V/_ / and

J6Om(tn)=W_q, O-_n_M, are determined with _ = max(6F,6O) , we apply the

finite difference algorithm described previously in this section, marching backward

in the x-direction. The values V_) and W_), 0 -_ n - M-N, so obtained, are then taken

as the accepted approximations for the interface temperature and heat flux

histories respectively at the different time locations at x = O. Finally, we

identify the approximate transient source function ga or the approximate radiation

law function E a at the grid points of the time interval I = [O,1] using equations

C6) and (9).

In all cases, we use h = /_x = 0.01 and k = At = 0.O1. Thus, N = 100, L = 1.99, M

= 200, _max = O.1 and Ic3max = [-0.3,2.29]. The noisy data is obtained by adding a

random error to the exact data at every grid point t n in I¢3max:

FmCt n) = F(t n) + en, I

OmCtn ) = O(tn) + en,2,

where en, 1 and en, 2 are Gaussian variables of variance ¢2 = _2.

n
If the discretized computed transient source function component is denoted by ga

and the true component is gn = g(tn) ' we use the sample root mean square norm to

measure the error in the discretized interval I = [0,1]. The solution error is then
given by

1 M-N

Ilga-gill= [M-N n_, (gn- gn)2 ]we

n

If the discretized computed radiation law function component is denoted by E a =

Ea(t n) and the true component is E n = E(tn), after evaluating the ordered pairs

n n
(VO,Ea), 0 -_ n -_ M-N, we obtain a graph of the approximate functional relationship

between the radiation law and the temperature at the interface. This plot is then

compared with the exact graph corresponding to the values (f(tn),E(tn)) of the

model problem.

Tables 1 and 2 show the results of our numerical experiments associated with
Problems 1 and 2 respectively, when attempting to identify the transient source

function at the interface. In all cases, the numerical stability of the method is
confirmed. The uniformly smaller error norms in Problem 1 are expected since
at time t = 0.2 the exact source solution has a finite jump discontinuity while in

Problem 2 the exact source solution has an infinite jump at time t = 0.2. For this

reason, we have added an extra column in Table 2 indicating the error norms in the

time interval [.3,1], after the discontinuity. It is clear that the method rapidly
dissipates the effect of the singularity, a very desirable feature.

The qualitative behavior of the reconstructed transient source function for

Problem 1 is illustrated in Figures 1 and 2 where the numerical solution for an

average perturbation c = 0.005 (full line) is plotted for p = 1 (Newton's cooling
law) and p = 4 (Stefan's radiation law) respectively. In Figure 3 we show the graph
associated with the reconstructed nonlinear radiation law as a function of the

approximate temperature at the interface for p = 4 (full line) and the exact

L 1
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F boundary radiation law (star symbols). Figures 4 and 5 show the computed sourcel
functions (full lines) for p = 1 and p = 4 respectively, for Problem 2 and for the
noise level c = 0.005.

PROBLEM 1

p = 1 (Newton) p = 4 (Stefan)

e 6 Error norm e Error norm

0. 000 0.04 0. 0866 0.000

O. 002 O. 06 0. 0921 0.002

6

O. 04

O. 06
0.0867

0.0929

0.005 O. 06 O. 1014 0.005 0.06 O. 1038

Table 1. Error norm as a function of the level of noise

PROBLEM 2

p = 4 (Stefan)p = 1 (Newon)

e 6 Error norm
[0,11/[.3, 11

0.000 0.04 .5208/.0183

0.002 0.06 .5560/.0631
0.005 0.06 .5879/.1108

c 6

0.000 0.04

0.002 0.06
0.005 0.06

EFFOF norm

[0,1]/[.3, i]

.5135/.0373

.5673/.0675

.5935/.1375

Table 2. Error norm as a function of the level of noise

4. Conclusions.

An explicit and unconditionally stable space marching finite difference method

for the solution of the one-dimensional transient inverse heat conduction problem

has been implemented for the numerical identification of surface heat sources, if
the energy radiation law at the active interface is known, and to the numerical

identification of the nonlinear surface radiation law if the surface is heated by a

source at a rate proportional to a given function and the interface temperature
contains enough information.

The computational procedure is applied to two examples corresponding to Newton
cooling law and to Stefan-Boltzmann radiation law. In both problems, the source
functions to be identified have discontinuous histories and in one case an infinite

jump. The algorithm restores stability with respect to the data, which is essential

for the introduction of the inverse problem approach, and good accuracy is
obtained, even for small time sample intervals and relative high noise levels in
the data.

L
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